Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 373: 114679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190933

RESUMEN

INTRODUCTION: We studied spatiotemporal features of acute transcriptional inflammatory response induced by a focal brain injury in distant uninjured neuronal tissue and a role of endocannabinoid (eCB) system in its control. MATERIALS AND METHODS: A focal excitotoxic lesion was induced by a unilateral injection of kainate in the dorsal hippocampus of awake Wistar rats. During acute post-injury period (3 h and 24 h post-injection), mRNA levels of genes associated with neuroinflammation (Il1b, Il6, Tnf, Ccl2; Cx3cl1, Zc3 h12a, Tgfb1) and eCB receptors of CB1 and CB2 types (Cnr1 and Cnr2) in intact regions of the hippocampus and neocortex were measured using qPCR. Occurrence of acute symptomatic seizures was controlled electrographically. To modulate eCB signaling during injury and acute post-injury period, antagonists (AM251, AM630) and agonist (WIN55-212-2) of eCB receptors were administered before the injury induction. RESULTS: Local intrahippocampal injury triggered widespread time- and region-dependent neuroinflammation in undamaged brain regions remote from the lesion site. The distant areas of the hippocampus and hippocampal meninges exhibited early (3 h) transient upregulation of pro- and anti-inflammatory cytokines simultaneously with occurrence of acute symptomatic seizures. The neocortex and its meninges showed minor neuroinflammation early after injury (3 h) but later (24 h) significantly upregulated several genes, mainly with anti-inflammatory properties. Focal lesion also changed expression of eCB receptors in the distant extra-lesional regions - CB1 receptors at 3 h and both CB1 and CB2 receptors at 24 h. Within the hippocampus, significant regional differences in constitutive and post-injury expression CB1 receptors were found. Pharmacological blockade of eCB receptors during injury and early post-injury period lengthened hippocampal neuroinflammation and reversed upregulation of anti-inflammatory molecules in the neocortex. CONCLUSION: The findings show that focal brain injury rapidly triggers widespread parenchymal and extraparenchymal neuroinflammation. The early injury-induced response is likely to represent neurogenic neuroinflammation produced by network hyperexcitability (acute symptomatic seizures). Activation of eCB signaling during acute phase of the brain injury is important for initiation of adaptive anti-inflammatory processes and prevention of chronic pathologic neuroinflammation in distant uninjured structures. However, the beneficial role of injury-induced eCB activity appears to depend on many factors including time, brain region, eCB tone etc.


Asunto(s)
Lesiones Encefálicas , Endocannabinoides , Ratas , Animales , Endocannabinoides/metabolismo , Ratas Wistar , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Convulsiones , Lesiones Encefálicas/etiología , Antiinflamatorios , Receptor Cannabinoide CB1/metabolismo
2.
Mol Neurobiol ; 58(8): 4028-4037, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33907944

RESUMEN

We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.


Asunto(s)
Citocinas/metabolismo , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Neocórtex/metabolismo , Receptor Cannabinoide CB2/metabolismo , Convulsiones/metabolismo , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Electroencefalografía/métodos , Hipocampo/fisiopatología , Indoles/farmacología , Masculino , Neocórtex/fisiopatología , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...